1,692 research outputs found

    Perspective on the human cough reflex

    Get PDF
    This review dissects the complex human cough reflex and suggests hypotheses about the evolutionary basis for the reflex. A mechanosensory-induced cough reflex conveys through branches of myelinated Aδ nerve fibers is not chemically reactive (i.e., capsaicin, bradykinin); possibly, its evolution is to prevent the harmful effects of aspiration of gastric or particulate contents into the lungs. This became necessary as the larynx moves closer to the opening of the esophagus as human ancestors adapt phonation over olfaction beginning less than 10 million years ago. The second type of cough reflex, a chemosensory type, is carried by unmyelinated C fibers. Supposedly, its origin dates back when prehistoric humans began living in close proximity to each other and were at risk for infectious respiratory diseases or irritant-induced lung injury. The mechanism for the latter type of cough is analogous to induced pain after tissue injury; and, it is controlled by the identical transient receptor potential vanilloid cation channel (TRPV1). The airways do not normally manifest nociceptive pain from a stimulus but the only consistent response that capsaicin and lung inflammation provoke in healthy human airways is cough. TRPA1, another excitatory ion channel, has been referred to as the "irritant receptor" and its activation also induces cough. For both types of cough, the motor responses are identical and via coordinated, precisely-timed and sequential respiratory events orchestrated by complex neuromuscular networking of the diaphragm, chest and abdominal respiratory muscles, the glottis and parts of the brain

    Surveillance of Respiratory Hazards

    Get PDF
    journal articleBiomedical Informatic

    Effectiveness of the global protected area network in representing species diversity

    Get PDF
    The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, 'one size fits all'—conservation targets

    Forecasting the monsoon on daily to seasonal time‐scales in support of a field campaign

    Get PDF
    The successful planning and execution of a major field campaign relies on the availability and reliability of weather forecasts on a range of time‐scales. Here, we describe the wide range of forecast products generated in support of a field campaign that took place in India in 2016 as part of the Interaction of Convective Organization with Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) project. We show examples of the suite of plots generated every day from the forecasts and supplied to the mission scientists, and describe how these were used to plan the flights. We highlight the benefits of having access to forecasts from a range of model resolutions and configurations; these allowed judgements to be made about uncertainty, particularly in the amount and location of deep convective rainfall, which is an important consideration for flight planning. Finally, we discuss the legacy of the forecasting activity, which has not only advanced our understanding of monsoon forecasting but also created a large database of targeted model forecast products for the whole of the 2016 monsoon season. These can be used by researchers for comparisons with in situ observations as well as future modelling studies

    The Impact of Conservation on the Status of the World\u27s Vertebrates

    Get PDF
    Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world\u27s vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species

    Assessing the Cost of Global Biodiversity and Conservation Knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160 million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We estimated that an additional US114millionwillbeneededtoreachpredefinedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical

    Evaluating Data Assimilation Algorithms

    Get PDF
    Data assimilation leads naturally to a Bayesian formulation in which the posterior probability distribution of the system state, given the observations, plays a central conceptual role. The aim of this paper is to use this Bayesian posterior probability distribution as a gold standard against which to evaluate various commonly used data assimilation algorithms. A key aspect of geophysical data assimilation is the high dimensionality and low predictability of the computational model. With this in mind, yet with the goal of allowing an explicit and accurate computation of the posterior distribution, we study the 2D Navier-Stokes equations in a periodic geometry. We compute the posterior probability distribution by state-of-the-art statistical sampling techniques. The commonly used algorithms that we evaluate against this accurate gold standard, as quantified by comparing the relative error in reproducing its moments, are 4DVAR and a variety of sequential filtering approximations based on 3DVAR and on extended and ensemble Kalman filters. The primary conclusions are that: (i) with appropriate parameter choices, approximate filters can perform well in reproducing the mean of the desired probability distribution; (ii) however they typically perform poorly when attempting to reproduce the covariance; (iii) this poor performance is compounded by the need to modify the covariance, in order to induce stability. Thus, whilst filters can be a useful tool in predicting mean behavior, they should be viewed with caution as predictors of uncertainty. These conclusions are intrinsic to the algorithms and will not change if the model complexity is increased, for example by employing a smaller viscosity, or by using a detailed NWP model

    Batch-produced, GIS-informed range maps for birds based on provenanced, crowd-sourced data inform conservation assessments.

    Get PDF
    Accurate maps of species ranges are essential to inform conservation, but time-consuming to produce and update. Given the pace of change of knowledge about species distributions and shifts in ranges under climate change and land use, a need exists for timely mapping approaches that enable batch processing employing widely available data. We develop a systematic approach of batch-processing range maps and derived Area of Habitat maps for terrestrial bird species with published ranges below 125,000 km2 in Central and South America. (Area of Habitat is the habitat available to a species within its range.) We combine existing range maps with the rapidly expanding crowd-sourced eBird data of presences and absences from frequently surveyed locations, plus readily accessible, high resolution satellite data on forest cover and elevation to map the Area of Habitat available to each species. Users can interrogate the maps produced to see details of the observations that contributed to the ranges. Previous estimates of Areas of Habitat were constrained within the published ranges and thus were, by definition, smaller-typically about 30%. This reflects how little habitat within suitable elevation ranges exists within the published ranges. Our results show that on average, Areas of Habitat are 12% larger than published ranges, reflecting the often-considerable extent that eBird records expand the known distributions of species. Interestingly, there are substantial differences between threatened and non-threatened species. Some 40% of Critically Endangered, 43% of Endangered, and 55% of Vulnerable species have Areas of Habitat larger than their published ranges, compared with 31% for Near Threatened and Least Concern species. The important finding for conservation is that threatened species are generally more widespread than previously estimated
    corecore